

Avis général

Utilisation de charge de densité supérieure à 1 dans un emballage en PP

Dans le cadre du présent Avis, le COTREP s'intéresse aux emballages dont la résine majoritaire est le PP chargé en matériaux de densité supérieure à 1 g/cm³.

Lors de la régénération du PP, la matière, suivra le process schématisé ci-dessous :

Une fois broyée, celle-ci passera par une étape de flottation réalisée dans l'eau. L'eau, avec une densité de 1 g/cm³, permet de séparer les paillettes de PP, lesquelles flottent, des impuretés de densité supérieure à 1 g/cm³, qui coulent. Seules les paillettes de densité inférieure à 1 g/cm³ seront donc conservées par le process.

Si l'ajout d'une charge de densité supérieure à 1 g/cm³ en mélange dans le PP modifie suffisamment la densité globale de la matière pour qu'elle dépasse la valeur seuil de 1 g/cm³, celleci coulera avec les autres impuretés. Cette matière éliminée ne sera donc pas recyclée, et génèrera une perte de rendement matière pour le recycleur.

Détermination de la proportion maximale intégrable de charge de densité connue :

Soit x_i la proportion d'un des composants du mélange et d_i la densité du composant, on peut calculer la densité d'un mélange d_f en utilisant la formule suivante :

$$d_f = \frac{1}{\sum_{i=1 \text{ à } n} \left(\frac{x_i}{d_i}\right)}$$

NB : bien vérifier que la somme des proportions x_i soit égale à I

Dans le cas d'un mélange de deux composants, l'expression devient : $d_f = \frac{1}{\frac{x_1}{d_1} + \frac{x_2}{d_2}}$ (avec $x_1 + x_2 = 1$)

Avec $x_1 = A$ et $x_2 = 1 - A$, il est alors possible de calculer la quantité (A%) de charge maximale à introduire pour que la densité finale de l'emballage ne dépasse pas 1 g/cm³ grâce à l'expression :

$$A < \frac{d_1 d_2 - d_1}{d_2 - d_1}$$

Prenons l'exemple d'une charge de densité d_1 = 3,58 g/cm³ en mélange homogène dans une matrice PP de densité d_2 = 0,92 g/cm³,

Dans cet exemple, l'expression devient : $A < \frac{3.58 \times 0.92 - 3.58}{0.92 - 3.58}$ soit A < 0,108 (10,8%) :

- Jusqu'à 10,8 % d'incorporation de la charge considérée, la matière flottera et ne sera pas perdue (densité inférieure à 1 g/cm³);
- A partir de 10,8 % d'incorporation de la charge considérée, la matière coulera et sera perdue (densité supérieure à 1 g/cm³).

Avis Général 50 Mise à jour : 09/10/2015 Publication : 23/05/2015

CONCLUSION

En l'état actuel des équipements et techniques utilisés et disponibles en Europe, toute charge de densité supérieure à 1 g/cm³ introduite dans un emballage de PP, en proportion suffisante pour que sa densité globale dépasse 1 g/cm³, empêche le recyclage de cet emballage.

En ce sens, le COTREP préconise la limitation de l'utilisation de charges de densité supérieure à 1 g/cm³ à des proportions ne faisant pas basculer la densité finale de l'emballage PP au-dessus de 1 g/cm³.

NB : Au-delà de l'impact sur la densité, une charge pourra également avoir un impact sur les équipements et sur les propriétés finales de la matière, à définir plus précisément car variable selon la nature de la charge utilisée et son taux d'incorporation.

Paris, le 7 octobre 2015.

and the second

LE COTREP:

Maryon PAILLEUX

Thomas ETIEN

Vincent COLARD

Avis Général 50

Mise à jour : 09/10/2015

Publication: 23/05/2015